Einstein egyenletei a fényelektromos hatás - studopediya
A maximális kinetikus energia a fotoelektronok lineárisan nő a gyakorisága a fény, és nem függ a fény intenzitását.
Amikor egy pozitív feszültség világít katód
Amikor negatív feszültség világít anód
Zárófeszültségét Uz hívják a feszültséget, amely a fotoelektromos hatás leáll.
Zárófeszültség Uz társított maximális kinetikus energiája fotoelektronok Ek (max) arány Ek (max) = Uz e
1. Az erőssége a telítettség a fotoáram arányos a fény intenzitása.
3. Minden anyag, ott van a vörös szélén a fotoelektromos hatás, azaz a legalacsonyabb frekvenciájú νmin, ahol lehetséges fotoelektromos hatás
A magyarázat a fotoelektromos hatás végeztük alapján Planck kvantum hipotézis
a beeső foton energiát fordítunk leküzdésében az elektron kilépési munkáját az anyag és a kinetikus energia elektronok üzenet
Electron kilépési munkáját a fém egyenlő a minimális energia, hogy az elektron kell rendelkeznie levehető felület anyaga.
Vannak külső és belső fotoelektromos hatás.
1. A fotoelektromos hatás nem lehetséges, ha a beeső foton energiája elegendő ahhoz, hogy felszámolja a kilépési munka, hv <Авых
2. Ha hνmin = AO - a küszöböt a fotoelektromos hatás.
A frekvencia és hullámhossz a fotoelektromos küszöb:
Szerint Planck, bármilyen sugárzás (beleértve a könnyű) áll az egyedi fotonok. Következésképpen a sugárzási energia mindig egyenlő az energia az egész számú kvantum. Azonban az energia Ikerház kvantum gyakoriságától függ.
A fotonenergia vagy fotonenergia
- a sugárzási frekvencia, J · s ha Planck-állandó
Sugárzás kvantumokat, a frekvencia (vagy a hullámhossz), amelyek megfelelnek a látható fény tartományban, úgynevezett fénykvantumokra.
A kapcsolat az energia és a tömeg
- megfelelő tömeg energia W, m / sec - a fény sebessége vákuumban
Kvantálás energia azt jelenti, hogy a sugárzás áramlási részecskék. Ezeket a részecskéket nevezzük fotonok, de nem abban az értelemben, részecskéket a klasszikus fizika.
J · c Planck-állandó, - a frekvencia a sugárzás, - a hullámhossz, C - fénysebesség vákuumban
Fotonok mindig mozog a fény sebessége; azok nem léteznek nyugalmi állapotban, nyugalmi tömege nulla
Elektron emisszió anyagot elektromágneses sugárzás a fény.
I. Egy fix frekvencia a beeső fény a fotoelektronok száma felszabadult a katód egységnyi idő arányos a fényintenzitás (Act Stoletova).
II. A maximális kezdeti sebesség (a maximális kinetikus energia) nem függ fotoelektronok beeső fény intenzitása, és határozza meg csak a frekvencia
III. Minden anyag, ott van a vörös szélén a fotoelektromos hatás, azaz a Minimális chastotasveta (attól függően, hogy a kémiai anyag természetétől és a felület állam), amely alatt a fényelektromos hatás lehetetlen.
Négy diák megkérdezte, hogy dolgozzon perspektivikusan ábrázolja a maximális mozgási energiája elektronokat a fotoelektromos hatás a lemez, az intenzitás / beeső fényt. Melyik szám Helyesek
A maximális kinetikus energia fotoelektrono nem intenzitásától függ a beeső fény. Következésképpen, megfelelően konfigurált 4. ábra).
A program a tanulmány a fotoelektromos hatás

Az áram-feszültség jellemzőit a fényelektromos hatás

- őrizetbe teljesítmény. Ha egyik az elektronok, sőt, akár indulás a katód maximális sebessége nem lehet legyőzni a retardáló mezőt, és eléri az anód.
Uz mérete nem függ az intenzitást a beeső fényáram. Gondos mérések kimutatták, hogy a potenciálgát lineárisan nő frekvenciájú ν fény.

A fénysorompó világítják egy meghatározott frekvenciájú és intenzitású. Az ábrán egy telek az erő a fényáram a fénysorompó alkalmazásával a feszültség.

Állandó fényáram intenzitása érték független a frekvenciától. Amikor megváltoztatja a frekvenciát blokkoló feszültség változik. Ezek a feltételek megfelelnek az 1. ábra).
Einstein egyenletet a fotoelektromos hatás
A - az elektron kilépési munkáját a beeső foton elfogyasztott energia elektron energia fém és legfeljebb kibocsátott elektron kinetikus energia.
Ez az egyenlet származik alapján a kvantum fényelektromos hatás elméletét, hogy a frekvencia a fény v kibocsátott nem csak, hanem a tér és rasprostranyaetsyav pogloschaetsyaveschestvom különálló részek (fotonok), amelynek energiája
A réteg kalcium-oxid fénnyel besugározzuk, és bocsát ki az elektronok. Az ábrán egy grafikonon a maximális kinetikus energia fotoelektronok gyakoriságától függően a beeső fény.


A grafikon azt mutatja, a függését fotoáram az alkalmazott zárófeszültség, amikor lefedő a fémlemezt (a fotokatód) sugárzás energiája 4 eV.


Optikai küszöb
- maximális hullámhossza a beeső fény (- rendre a minimális frekvencia), amelynél a fényelektromos hatás is lehetséges.
A kilépési munka fejezzük eV
1EV = 1,6 × 10 -19 J
Mi felel meg a függőség gráf maximális kinetikus energia E fotoelektrono gyakorisága foton érkezik az anyag a fotoelektromos hatás (lásd. Ábra)?
Fotoelektronokat lehető legnagyobb kinetikus energia az esetben, ha a frekvenciát a beeső fotonok meghaladja a fotoelektromos küszöböt. A grafikon megfelel egy piros határ A. pontban Következésképpen, a feladat feltételeit megfelel a 3. ábrára.
A nyomás által termelt fény normál beesés a felületre
- reflexiós; - az energia az összes foton érkezik egységnyi területen, egységnyi idő.
Alacsony nyomású meghatározások
alapján a kvantumelmélet
Enyhe nyomás a felszínen annak a ténynek köszönhető, hogy minden egyes foton az ütközés a felület átadja a lendülete.
alapján hullámelmélete
Fény nyomás a felszínen miatt Lorentz-erő a elektronok anyag ingadozó hatására az elektromos mező az elektromágneses hullám.